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ABSTRACT

Lactose-appended cyclodextrin derivatives have been synthesized and threaded onto hydrophobic polymers in aqueous solution to form
dynamic multivalent lactosides for binding to lectins. The threading process, which proceeds quickly, can be observed by one- and two-
dimensional NMR spectroscopies.

Protein-carbohydrate interactions mediate both physiological
and pathological phenomena,1 typically using multivalent
binding interactions2 to enhance the relatively weak affinity
of a single saccharide ligand for its dispersed and orientation-
specific receptor. Multivalent constructs such as glycoclus-
ters,3 glycopolymers,4 glycodendrimers,5 and glycoproteins,6

which display a large number of saccharide ligands, have
been developed as probes to gain a better understanding of
protein-carbohydrate interactions in the regulation of bio-

logical processes. Recently, interest7 has been focused upon
investigating how the architectural features, particularly those
that control the presentation of the ligands, of the glyco-
conjugates determine their avidity for protein receptors.
While these covalent architectures present their ligands in a
somewhat constrained manner, we have become interested
in developing dynamic systems in which the saccharide
ligands can orient themselves with many fewer constraints
in a way that maximizes their overall binding interaction with
a dispersed and orientation-specific receptor.

Cyclodextrins (CDs), which are cyclic oligosaccharides
typically comprised of six, seven, or eight (R-,â-, or γ-CD,
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respectively)R-1,4-linked D-glucopyranosyl residues have
a long recorded history8 of forming inclusion complexes with
hydrophobic guests within their largely hydrophobic cavities.
In addition to many 1:1 and 1:2 host-guest interactions, the
CDs also form pseudopolyrotaxanes9 with linear polymers
such as poly(ethylene)glycol (PEG),10 poly(propylene) glycol
(PPG),11 and poly(tetrahydropyran) (PTHP),12 i.e., numerous
CD “beads” thread spontaneously onto polymer “strings.”
Polyrotaxanes, either formed by reacting13 bulky stopper
groups with the two terminal ends of a pseudopolyrotaxane
or by slipping14 the CD beads over an appropriately sized
stopper, have been synthesized using bothR- andâ-CD. This
concept has been utilized in the formation of multivalent
structures for the display of a valine-lysine dipeptide15 and
of biotin.16 Herein, we present the synthesis of pseudopoly-
rotaxanes comprised of lactose-appended CD beads (Figure
1), which have been threaded onto polymer strings with the

objective of using them as dynamic multivalent glyco-
conjugates for binding lectins. In principle, the individual
CD beads should be able to slide along and to rotate around

the polymer axes, allowing the lactose ligands to orient
themselves to achieve the most favorable presentation to their
protein receptors and thus to maximize their binding inter-
actions.

The lactose-bearingR-CD 1 was obtained17 (Scheme 1)
by coupling the lactosyl propionic acid derivative318 with
the monoamino cyclodextrin419 using HBTU-BF4 to
activate the carboxylic acid. The crude product was deacety-
lated under Zémplen conditions to afford20 1, which was
purified by gel filtration chromatography. A pseudopolyro-
taxane was formed by first dissolving121 in D2O, followed
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Figure 1. Lactoside-bearing CD derivatives1 and2.

Scheme 1. Synthesisa of Lactose-AppendedR-CD 1

a Reaction conditions: (i) HBTU-BF4/DMF; (ii) NaOMe/
MeOH.
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by the addition of bis-3-aminopropyl-terminated PTHP (Mn

) 1100), which was insoluble in the aqueous solution in
the beginning. Following sonication for 40 min, the insoluble
material was no longer evident in the aqueous solution, an
observation which suggested that solubilization of the
hydrophobic polymer had occurred as a result of pseudopoly-
rotaxane formation. The formation of pseudopolyrotaxanes
between the lactose-appendedR-CD 1 and a range of
hydrophobic polymers was investigated (see, e.g., Figure 2)

by 1H NMR spectroscopy. The1H NMR spectrum22 of 1 in
D2O broadened following the addition of PTHP to the
solution. The H-3 and H-5-protons (Figure 3) of the
D-glucopyranosyl residues comprising the CD point into the
center of its cavity, thus allowing them to serve as probes
for the complexation of a guest molecule. Upfield shifts were
observed for the H-3 protons, an observation which indicates
that the PTHP has threaded itself through the torus of the
CD. Moreover, a two-dimensional TROESY NMR experi-
ment (Figure 4), performed on the sample containing the

pseudopolyrotaxane formed between1 and PTHP, revealed
cross-peaks between the H-3 and H-5 signals of the CD torus
and the signals for the methylene protons in the polymer
resonating atδ ) 1.4 ppm. The presence of these cross-
peaks, which is attributed to the close proximity of the H-3
and H-5 protons of the CD to the methylene protons in the
polymer, supports strongly the formation of pseudopolyro-
taxane. While water-soluble pseudopolyrotaxanes were formed
initially, precipitation started after the aqueous solution had
been standing for about 1 month. Precipitates also formed
instantaneously when more concentrated solutions (42.7 mM)
of the lactose-appendedR-CD 1 were investigated.
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101.3 (4× C-1), 101.4 (C-1), 102. 9 (C-1′′). MALDI-TOF:m/z) 1429
[M + Na]+.
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Figure 2. (a) Complete1H NMR spectrum of theR-CD 1 in D2O
recorded on a 500 MHz spectrometer at 298 K. Following the
addition of PTHP and sonication for 40 min, (b) the1H NMR
spectrum of the sample becomes broadened and (c) an expansion
of the1H NMR spectrum shows the upfield shift of the H-3 signal.

Figure 4. Two-dimensional TROESY NMR spectrum (500 MHz,
298 K) of the pseudopolyrotaxane formed by adding PTHP to a
solution of theR-CD 1 in D2O. The ROE cross-peak between
adjacent methylenes of the polymer26 present in the spectrum is
denoted by an asterisk (*).

Figure 3. H-3 and H-5 hydrogen atoms of the CD torus point
into the cavity and interact with the PTHP polymer chain.
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In an effort to increase the water solubility of the
pseudopolyrotaxane, we synthesized the lactose-appended
â-CD 223 starting from the mono(6-amino-6-deoxy-2-O-
methyl)-hexakis-2,6-di-O-methyl-â-cyclodextrin24 using a
synthetic scheme25 similar to the one outlined in Scheme 1
for the synthesis of1. The methoxyl groups serve to break
both the inter- and intramolecular hydrogen bonding net-
works that form between the hydroxy groups in CDs.12b

The formation of the pseudopolyrotaxane in aqueous
solution was confirmed by both one- and two-dimensional
NMR experiments. Upfield shifts of the H-3 and H-5 proton
signals were observed upon the addition of bis-2-aminopro-
pyl-terminated PPG (Mn ) 2000) to a solution of2 in D2O.
Small changes were also observed in the chemical shifts of
the MeO-2 and MeO-6 resonances.19 In the two-dimensional
TROESY NMR experiment (Figure 5) performed on this

pseudopolyrotaxane, ROE cross-peaks were observed be-
tween H-3 and H-5 of2 and the methyl groups in the PPG

derivative, indicating that2 had indeed threaded onto the
hydrophobic polymer. Similar observations were noted in
the1H NMR spectra when the same experiment was repeated
using PTHP as the polymer thread. As expected,27 2 does
not form a complex with poly(ethylene glycol) (PEG), since
the cavity of theâ-CD derivative is simply too large to be
able to facilitate complexation of the more hydrophilic
polymer. The1H NMR spectrum of2 in D2O showed no
changes at all upon addition of PEG (Mn ) 2000), even
after25 a period of 4 days.

When either PPG or PTHP was added to a concentrated
aqueous solution of2, neither of the two pseudopolyrotaxanes
precipitated from solution over a period of several months.
The lack of a precipitate reinforces the importance of the
intermolecular hydrogen bonding network to the formation
of a tightly packed pseudopolyrotaxane, a phenomenon that
has been observed previously.12b,28

In conclusion, we have described the formation of
pseudopolyrotaxanes from both lactose-bearingR- andâ-CDs
threaded onto hydrophobic polymers such as PTHP and PPG.
The formation of the complexes was monitored using one-
and two-dimensional NMR spectroscopies using the H-3 and
H-5 hydrogens of the cyclodextrin as probes. Presently, we
are pursuing the conversion of the pseudopolyrotaxanes into
polyrotaxanes by both stoppering13 and slippage14 protocols
with the goal of using them as dynamic water-soluble
multivalent (supra)molecular polymers for binding to lectins.
Specifically, we are targeting initially a family of proteins
known1d as galectins, which recognize lactosyl residues in a
paucivalent manner.
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Figure 5. Two-dimensional TROESY NMR spectrum (500 MHz,
298 K) of the pseudopolyrotaxane formed by adding PPG to a
solution of theâ-CD 2 in D2O.
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